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Abstract

In this paper we examine the effects of temperature-dependent transport and thermal
diffusion on the structure and characteristics of a diffusion flame. The configuration
adopted is the planar unstrained flame with a bulk flow directed toward the reaction
zone from either the fuel or the oxidizer sides. Included in this discussion is the no-
flow case, where the reactants reach the reaction zone purely by diffusion. The model
allows for non-unity and distinct Lewis numbers, for the fuel and oxidizer. Results
show that the variations of the thermal conductivity and the diffusion coefficients with
temperature affect the flame standoff distance and flame temperature and the profiles
of temperature and concentration, in accord with experimental data. The predicted ex-
tinctions conditions are exhibited by a critical Damköhler number Dc below which the
flame extinguishes. This Dc is significantly smaller for the temperature dependent case
when compared with previous analysis without the temperature dependence. Ther-
mal diffusion, also known as the Soret effect, also affects the flame standoff distance
by shifting it towards the fuel/oxidizer and affects the flame temperature by making
it smaller/larger for heavy/light fuels respectively. Predicted extinctions Dc are mini-
mally affected by the Soret effects, except when having very heavy fuels. The amount
of leakage across the reaction sheet that causes extinction is more/less for light/heavy
fuels, respectively.

Keywords: Diffusion Flame, Soret Effect, Extinction, Temperature-dependent
Transport

1. Introduction

Analytical studies of diffusion flames directed towards understanding their funda-
mental properties, have typically assumed constant transport properties [1–5]. It is
known, however, that the thermal conductivity of the mixture and the molecular diffu-
sivities of the various species are strongly dependent on temperature, which have non-
trivial consequences on the flame characteristics that need to be properly examined.
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Indeed, the dependence of transport properties on temperature has been accounted for
in numerical studies in order to properly simulate the diffusion fluxes and enable a
more accurate comparison with experiments. For example, accounting for these effects
Law and Law [6] compared quantitatively the properties of heptane droplet combus-
tion with experimental data, and Puri and Libby [7] provided an assessment of the
effect of water gas-shift equilibrium on the flame. Fundamental understanding of the
properties of diffusion flames, obtained by comparing their structure for constant and
temperature-dependent transport, has not been previously reported.

Another effect that has been typically neglected in theoretical studies is thermal
diffusion, or Soret effect, which correspond to the diffusion of mass caused by temper-
ature gradients. Cross-transport are typically considered second order effects and have
been often neglected in combustion studies; c.f. Warnatz et al. [8]. Recently, Rosner
[9] pointed out that thermal diffusion could have a nontrivial effect on flame charac-
teristics, particularly in combustible mixtures in which the molecular diffusivities of
the fuel and oxidizer are very different than the thermal diffusivity of the mixture, i.e.,
in mixtures in which the Lewis numbers are significantly different than one; see also
Rosner et al. [10]. In a follow-up study Arias-Zugasti and Rosner [11] examined the in-
fluence of thermal diffusion on the temperature and standoff distance of a counterflow
diffusion flame, accounting also for temperature dependent transport, but restricting
attention to the Burke-Shumann limit of complete combustion.

The objective of this work is to provide a fundamental understanding of transport
and cross-transport effects on the structure of diffusion flames. The adopted config-
uration is the simplest planar unstrained diffusion flame, where a bulk uniform flow
containing fuel is directed towards the reaction zone with the oxidizer diffusing against
the stream, and the reverse situation in which oxidizer is supplied in the inflow and
fuel is diffusing against the flow towards the reaction zone. Included in the discussion
is the idealized limit of no flow, where the reactants reach the reaction zone purely by
diffusion. The analysis follows the asymptotic formulation of Cheatham and Matalon
[5], extended appropriately to accommodate for temperature-dependent transport coef-
ficients and diffusion fluxes that result from the Soret effect. For steady planar flames,
as discussed here, the formulation is valid for non-unity and distinct Lewis numbers for
the fuel and oxidizer, and allows for finite-rate chemistry, covering the entire range of
Damköhler numbers from the Burke-Schumann limit of complete combustion down to
extinction.

We note for clarity that for multi-dimensional and time-dependent problems the
general theory presented in Cheatham and Matalon [5] is limited to equi-diffusion
flames, i.e., flames for which the Lewis numbers do not significantly differ from one.
For otherwise, the temperature along the reaction sheet varies by O(1) amounts from
its stoichiometric value, changes that cannot be properly captured by the asymptotic
analysis. Unfortunately, this fact was not explicitly stated in the referenced paper.
Possible confusion stems also from the inappropriate use of the term “adiabatic flame
temperature”, which intended to designate the stoichiometric temperature, namely the
temperature along the stoichiometric surface where both, the fuel and oxidizer are com-
pletely consumed. Evidently, the stoichiometric temperature depends on the means
by which fuel and oxidizer are transported to the stoichiometric surface (or reaction
sheet), namely on their molecular diffusivities or Lewis numbers, as explicitly stated
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in the referenced paper and shown for the planar chambered flame considered therein.
The statement in Cheatham and Matalon [5] on page 112 that “to leading order ... the
temperature along the sheet is the adiabatic flame temperature, assumed constant” did
not mean constant for all Lewis numbers, but rather constant along the reaction sheet,
for given Lewis numbers.

In the next section, the flow configuration is described along with the governing
equations and the asymptotic formulation. The effects of variable transport are dis-
cussed in Sec. 3 and the effects of thermal-diffusion are discussed in Sec. 4. The
presented results illustrate the effects of the various parameters on the flame structure,
and provide expressions for the flame standoff distance and flame temperature, as well
as explicit conditions for flame extinction.

2. Formulation

A schematic of the chambered-diffusion flame configuration is shown in Fig. 1.
Fuel is supplied in a stream flowing from the bottom of the chamber, assumed at x̃ =
−L, and oxidizer diffuses inwards from the top boundary, x̃ = L. The reverse but
equivalent problem, in which oxidizer is supplied in the stream and fuel diffuses against
it, is readily available by exchanging the roles played by the two reactants. The mass
flux m̃ at the inflow is specified, and the flow is assumed to remain uniform across the
chamber. Conditions at the two boundaries are maintained uniform, such that

T̃ = T̃0, ρ̃ = ρ̃0, ỸF = ỸF
0
, ỸO = 0 at x̃ = −L

T̃ = T̃1, ρ̃ = ρ̃1, ỸF = 0, ỸO= ỸO
1

at x̃ = L ,

where T̃ and ρ̃ stand for the temperature and density of the mixture, ỸF and ỸO are the
mass fractions of the fuel and oxidizer, and the subscripts 0 and 1 denote conditions at
the bottom/top of the chamber, respectively.

Maintaining uniform conditions at the boundaries is experimentally challenging be-
cause of the difficulty of supplying the reactants and removing the combustion products
uniformly across the entire cross-section of the chamber. An experimental configura-
tion capable of overcoming these difficulties, and generating a flat one-dimensional
nearly-unstrained diffusion flame, was first introduced at EPFL by P. Monkewitz. The
realization of the boundary conditions at the top of the chamber was demonstrated by
Lo Jacono et al. [12] by introducing the oxidizer into the chamber through an array
of hundreds of closely spaced hypodermic needles, separated equally from each other
to allow the hot combustion products to escape between them. The inhomogeneity
near the exit plane of the needles was limited to a thin layer of thickness comparable
to the needle spacing, such that uniform conditions prevailed just below this layer, a
location identified as the virtual boundary. An improved design was subsequently de-
veloped by Robert and Monkewitz [13, 14] where both reactants were introduced into
the chamber through array of needles. The implementation of this design produced
flat flames that experienced very little residual strain, caused primarily by temperature
inhomogeneities in the supply and exhaust paths. It also permitted better control of the
magnitude and direction of the bulk flow with provisions to reach the limiting situation
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Fuel

Oxidizer

x̃=�L

x̃=L

x̃= x̃f

x̃

T = T̃1, ⇢̃= ⇢̃1, ỸF =0, ỸO = ỸO
1

T = T̃0, ⇢̃= ⇢̃0, ỸF = ỸF0
ỸO =0

Figure 1: Schematic of the chambered-flame configuration shown for m̃ > 0, i.e., when the fuel is supplied
in the incoming stream and the oxidizer is diffusing against the stream; the reverse situation with m̃ < 0
corresponds to oxidizer supplied in the stream and fuel diffusing against the stream.

of a “pure diffusion flame” corresponding to m̃ = 0, namely when the fuel and oxidizer
reach the reaction zone from opposing ends solely by diffusion with no net flow across
the flame.

The chemical activity in the chamber is modeled by a global one-step irreversible
reaction of the form

νF Fuel + νO Oxidizer→ Products + {Q } ,

where νF , νO are the stoichiometric coefficients of the fuel and oxidizer, respectively,
and Q is the total heat released during combustion. The reaction rate ω̃ is assumed to
obey an Arrhenius law with a pre-exponential factor B and overall activation energyE,
namely

ω̃ = B
( ρ̃ỸF
WF

)( ρ̃ỸO
WO

)
e−E/RT̃

where WF ,WO are the molecular weights of the fuel and oxidizer, respectively andR
is the gas constant. The initial mixture strength representing the ratio of the fuel-to-
oxidizer mass supplied in the respective boundaries, normalized by their stoichiometric
proportion, is given by

φ =
ỸF0

/ỸO0

νFWF /νOWO
, (1)

where ỸF0 and ỸO0 are the supplied fuel and oxidizer mass fractions.
The fuel and oxidizer supplied from opposing ends are appropriately diluted so

that the mixture properties, such as mean molecular weight, thermal conductivity and
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specific heat are determined by the abundant inert and the diffusivities D̃F , D̃O are the
fuel-inert and oxidizer-inert binary diffusivities, respectively. It is further assumed that
the specific heat (at constant pressure) of the mixture cp is constant, but the conductivity
of the mixture λ̃ and the diffusion coefficients D̃F , D̃O are temperature-dependent.
Specifically λ̃/cp, ρ̃D̃F , ρ̃D̃O have the same temperature dependence such that the
ratios Le

F
= λ̃/cpρ̃D̃F and Le

O
= λ̃/cpρ̃D̃O, corresponding to the fuel and oxidizer

Lewis numbers, remain constant.

2.1. Governing equations

For steady conditions, the mass flux m̃ = const. through the entire chamber. Con-
servation of energy of the mixture and the mass balance of the fuel and oxidizer are
given by

m̃cp
dT̃

dx̃
− d

dx̃

(
λ̃
dT̃

dx̃

)
= Qω̃, (2)

m̃
dỸi
dx̃
− d

dx̃

[
ρ̃D̃i

(dỸi
dx̃

+ αTi

Ỹi

T̃

dT̃

dx̃

)]
= −νiWiω̃, i = F,O (3)

where the diffusion fluxes in (3) include the ordinary Fickian diffusion and the Soret
thermal-diffusion transport effect, as appropriate for dilute mixtures. The adopted
simplification is systematically derived from the Stefan-Maxwell relations in the Ap-
pendix. The subscript N used to identify the abundant inert in the binary diffusivity
DiN , has been removed here for simplicity of notation. The thermal diffusion fac-
tor αTi

is independent of the mixture composition and is treated as constant. Finally,
the equation of state takes the form ρ̃T̃ = ρ̃0T̃0, as appropriate for the near-isobaric
conditions considered here.

To express the equations in dimensionless form, the state of the gas at x̃ = −L is
used as reference: the temperature and density are made dimensionless with respect to
T̃0 and ρ̃0, and the thermal diffusivity D̃T = λ̃/ρ̃cp, and mass diffusivities of the fuel
and oxidizer are scaled with respect to D̃T0

, D̃F0
, D̃O0

, respectively. Then,

λ̃

λ̃0

=
ρ̃D̃F
ρ̃0D̃F0

=
ρ̃D̃O
ρ̃0D̃O0

= Λ(T )

where T = T̃ /T̃0 is the dimensionless temperature. Typically, Λ obeys a power law
with exponents in the range 0.5 − 1. We further choose L as the unit of length, and
introduce the diffusion velocity D̃T0

/L as a unit speed. The fuel and oxidizer mass
fractions are normalized with respect to ỸF0 and ỸO1 , for convenience. The governing
equations then become:

m
dT

dx
− d

dx

(
Λ
dT

dx

)
= qω, (4)

m
dYF
dx
− Le−1

F

d

dx

[
Λ
(dYF
dx

+ αTF

YF
T

dT

dx

)]
= −ω, (5)

m
dYO
dx
− Le−1

O

d

dx

[
Λ
(dYO
dx

+ αTO

YO
T

dT

dx

)]
= −φω, (6)
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where the dimensionless mass flux m is effectively the Peclet number, representing
the ratio of convection to diffusion, and q = QỸF0/νFWF cpT̃0 is the heat release
parameter (the ratio of the heat release per unit mass of fuel and the enthalpy of the
fresh mixture at temperature T̃0). The reaction rate may be expressed in the form

ω = DT 2
s β

3 ρ2YFYO exp

{
βTs

(
1− Ts

T

)}
, (7)

where D is the Damköhler number given by

D =
L2

λ̃s/cp

(RT̃ 2
s

ET̃0

)3( ρ̃s
ρ̃0

)2 νOYF 0

φWF
B e−E/RT̃s , (8)

where β = ET̃0/RT̃ 2
s is the activation energy parameter, T̃s is the stoichiometric

temperature, namely the temperature at the stoichiometric surface where the fuel and
oxidizer meet in stoichiometric proportions and are completely consumed. Here and
thereafter, when the same symbol is used the “tilde” accent denotes the dimensional (or
normalized) quantity. The subscript s in λ̃s and ρ̃s has been used to indicate conditions
at the stoichiometric surface. The modification of the exponential term, and the factor
β3 inserted in (7) are suggested by the asymptotic treatment for large activation energy
(β � 1), which also requires that the Damköhler number be simultaneously large by
means of a distinguished limit (8), as discussed in [5].

It should be noted that in Cheatham and Matalon [5], the term adiabatic flame tem-
perature was used for the stoichiometric temperature T̃s, noting that it differs from the
adiabatic flame temperature of a premixed combustible mixture because, for a diffu-
sion flame, the flame temperature depends on the way in which the fuel and oxidant
are brought together. Thus, T̃s depends in general on the Lewis numbers, as has been
clearly demonstrated for the steady planar flame studied in the referenced paper [see
Eq. (5.7), therein]. The term adiabatic flame temperature should more appropriately
be reserved to the stoichiometric temperature when the fuel and oxidizer are supplied
at the same temperature T̃0 = T̃1 and both Lewis numbers are equal to one, for then
T̃s = T̃a where

T̃a = T̃0 +
QỸF0/νFWF cp

1 + φ

is the adiabatic flame temperature of a mixture consisting of ỸF0
/(1 + φ) fuel and

φỸO0
/(1+φ) oxidizer, at temperature T̃0. When the temperature at the two boundaries

is not equal, the adiabatic, or stoichiometric temperature for unity Lewis numbers,
includes the additional term (T̃1−T̃0)/(1+φ), which in dimensionless form, translates
to

Ta = 1 +
q + ∆T

1 + φ

where ∆T = (T̃1−T̃0)/T̃0 is the (dimensionless) temperature differential between the
values at the oxidizer and fuel boundaries. For nonunity Lewis numbers the stoichio-
metric temperature Ts depends on the flow configuration, as further elaborated below.
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The boundary conditions in dimensionless form are

T = 1, YF = 1, YO = 0, at x = −1, (9)

T = 1 + ∆T, YF = 0, YO = 1, at x = 1, (10)

The formulation consisting of (4)-(10) is valid for both cases: fuel supplied in the
stream (m > 0) or oxidizer supplied in the stream (m < 0).

2.2. Activation Energy Asymptotics

For large activation energy, β � 1, the chemical reaction is confined to a sheet
located at x= xf that divides the combustion field into two reaction-free regions: the
fuel region corresponding to −1<x<xf , and the oxidizer region corresponding to
xf <x<1. The resolution of the thin reaction zone, on the O(β−1) scale surrounding
x = xf , provides through asymptotic matching jump conditions for the state variables
across the reaction sheet. The resulting free boundary problem can be deduced from
the general formulation presented in Cheatham and Matalon [5] with minor modifi-
cations that arise from the additional Soret thermal diffusion fluxes and allowing the
transport coefficients to be temperature-dependent. We note, however, that in rendering
the equations dimensionless we have used a different scaling than the one used in [5],
which led to the parameters q and φ appearing explicitly in the jump relations. The
jump conditions across the reaction sheet, x = xf , are

[[T ]] = [[YF ]] = [[YO]] = 0, (11)

1

q

[[
dT

dx

]]
= − 1

Le
F

[[
dYF
dx

+αTF

YF
T

dT

dx

]]
= − 1

φLe
O

[[
dYO
dx

+αTO

YO
T

dT

dx

]]
(12)

YF

∣∣∣
x+
f

=
Le

F

q β
SF (γ, δ), YO

∣∣∣
x−
f

=
Le

O

q β
φSO(γ, δ), (13)

where [[·]] denotes the jump operator, defined as the difference between the values of a
quantity evaluated at x+

f and x−f .
Equation (11) affirms that all variables are continuous across the reaction sheet.

Equation (12) states that the fuel and oxidizer flow into the reaction sheet from op-
posing sides in stoichiometric proportions, and the total energy released at the reaction
sheet is conducted away at different rates that depend on the stoichiometric propor-
tions. Equation (13) determines the extent of reactant leakage through the reaction
zone in terms of the functions SF and SO that depend on two auxiliary parameters:
the heat transfer parameter γ and the reduced Damköhler number δ. The parameter γ,
given by

γ =
dT/dx

∣∣
x+
f

+ dT/dx
∣∣
x−
f

[[dT/dx]]
, (14)

determines the excess of heat conducted to one side of the reaction sheet; it is positive
when more heat is conducted towards the oxidizer side and negative when more heat
is conducted towards the fuel side. For the diffusion-flame regime considered here,
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−1 < γ < 1. The parameter δ is given by

δe−hf (γ,δ) =
4φLe

O
Le

F

q [[dT/dx]]
2D, (15)

determines the intensity of the chemical reaction where

hf = β(Tf − Ts) +
1− γ

2
SF +

1 + γ

2
SO,

where hf = hf (γ, δ) represents the excess enthalpy available at the reaction sheet,
with Tf the flame temperature that differs from the stoichiometric temperature Ts due
to incomplete combustion. It is evident that in order to satisfy the relations (11)-(13)
the reaction-diffusion equations on either side of the reaction sheet need to be solved
to O(β−1) for the determination of hf . Consequently, the relation (15) is, in general,
an implicit nonlinear expression for δ.

The functional dependence of SF and SO on the parameters γ and δ, has been
determined numerically [5] by solving the nonlinear boundary value problem that de-
scribes the internal structure of the thin reactive-diffusive zone. Due to the symmetry
with respect to γ, the reactant leakage may be expressed as

SF =

{
S1 0 ≤ γ < 1,
S2 −1 < γ ≤ 0,

SO =

{
S2 0 ≤ γ < 1,
S1 −1 < γ ≤ 0 ,

(16)

where S1 and S2 are referred to as the leakage functions. Representative functions
S1(γ, δ) and S2(γ, δ) are given in Fig. 2. The results show that for a given γ, two
solutions exist for δ > δc and none for δ < δc. An approximate expression for the
critical value δc was first derived by Liñán [1] in the form

δc =
{

1− |γ| − (1− |γ|)2 + 0.26(1− |γ|)3 + 0.055(1− |γ|)4
}

e1 ,

0.0 0.5 1.0
δ − δc

0

1

2

3

4

5

6

7

8

9

10

S1
|γ| = 0
|γ| = .2
|γ| = .4
|γ| = .6
|γ| = .8
|γ| = 1

0.0 0.5 1.0
0.0

0.2

0.5|γ| = 0
|γ| = .2
|γ| = .4
|γ| = .6
|γ| = .8
|γ| = 1

0.0 0.5 1.0
0

1

2

3

4

5

6

7

8

9

10

δ − δc

S2

Figure 2: The leakage functions S1 and S2 as a function of δ−δc for several values of γ.
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and is found to represent the numerical values extremely well. The dependence of the
leakage function on δ traces a C-shaped curve with a turning point at δc. The lower
branch of the response curves is a monotonically decreasing function of δ that tends to
zero when δ→∞. The upper branch is a monotonically increasing function of δ that
tends to infinity, or to a state associated with O(1) reactant leakage, when δ→∞.

It is more appropriate to interpret these results in terms of the Damköhler number
D, which is controlled by the system parameters. When D → ∞, both reactants are
completely consumed; the reaction sheet separates a region where there is fuel but no
oxidizer from a region where there is only oxidizer, as originally envisioned by Burke
and Schumann [15], and its temperature reaches the stoichiometric temperature Ts.
When systematically decreasing D, there is a continuous increase in reactant leakage
through the reaction sheet and an associated drop in flame temperature Tf . This behav-
ior persists until D = Dext, which marks the value below which a steady flame can no
longer be sustained due to insufficient mixing and a low temperature. Because of the
nonlinear dependence of the Damköhler number on δ exhibited in (15), the extinction
state Dext does not necessarily coincide with the critical δc. The extinction state Dext

lies on the lower branch of the leakage response curve when hf < 0, and on the upper
branch of the leakage response curve when hf > 0. In general, the upper branch of
the response curves is of limited physical interest, corresponding typically to unsta-
ble states [16, 17]. The aforementioned asymptotic formulation, therefore, covers the
entire range from complete combustion to extinction.

In order to have direct access to the leakage functions, without the necessity to
repeatedly integrate numerically the boundary value problem, Cheatham and Matalon
[5] provided the following formulae

S1 =

{
δ−1/3 {q0 + q1(δ − δc)q2} upper branch,
a0δ
−4/3 exp {−a1(δ − δc)a2} lower branch,

S2 =

{
δ−1/3 {r0 + r1(δ − δc)r2} upper branch,
b0δ
−4/3 exp

{
−b1(δ − δc)b2

}
lower branch;

which were shown to represent the numerical results with sufficient accuracy. The
coefficients ak, bk, qk, and rk for k = 0, 1, 2, that depend only on |γ|, can be found in
[5] and will not be repeated here.

The modification in the asymptotic formulation that resulted from allowing the dif-
fusivities to vary with temperature, appear in (8), where λ̃ has been replaced by its
value at the reaction sheet, namely λ̃s = λ̃(T̃s). Since Λ(T ) is continuous across the
reaction sheet, no change are observed in the jump relations (12). The other modifica-
tion to the formulation appears in the jump relations (12) where the net flux of reactants
flowing into the reaction sheet account now for the additional Soret transport. These
relations can be directly deduced by integrating the appropriate combinations of equa-
tions (4)-(6) across the reaction sheet, but can be also obtained as matching conditions
if one reexamines the internal structure of the reaction sheet following [5] (the details
that we do not show here). Finally, since YF , YO ∼ O(β−1) at the reaction sheet, the
Soret effect is also anO(β−1) effect that becomes more pronounced near the extinction
conditions where there is a significant reactant leakage through the reaction sheet.
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In the proceeding sections the effect of variable transport properties and Soret effect
on the characteristics of the reaction sheet are examined separately. First variable trans-
port properties with no Soret effect is examined for two cases, the Burke-Schumann
limit (with comparison to experimental data) and incomplete combustion. Then the
Soret effect with constant transport properties is also analyzed for the Burke-Schumann
limit and then incomplete combustion.

3. Variable Transport

The system of equations (4)-(13) for αi
T

= 0 has a solution corresponding to a
planar flame with the temperature and mass fractions profiles given by

T =


1+(Tf−1) eF (x)

−1

eF (xf )
−1

−1 < x < xf ,

1+∆T+(Tf−1−∆T ) e−G(x)
−1

e−G(xf )
−1

xf < x < 1,
(17)

YF =


1−(1−β−1q−1Le

F
SF ) e

Le
F

F (x)
−1

eLe
F

F (xf )
−1

−1 < x < xf ,

β−1q−1Le
F
SF

e
−Le

F
G(x)

−1

e−Le
F

G(xf )
−1

xf < x < 1,

(18)

YO =


β−1q−1φLe

O
SO

e
Le

O
F (x)
−1

eLe
O

F (xf )
−1

−1 < x < xf ,

1−(1−β−1q−1φLe
O
SO) e

−Le
O

G(x)
−1

e−Le
O

G(xf )
−1

xf < x < 1,
(19)

where

F (x) =

∫ x

−1

m

Λ
dx̌, and G(x) =

∫ 1

x

m

Λ
dx̌.

The solution includes expressions for the location of the reaction sheet x = xf and
the flame temperature Tf = T (xf ). Since the asymptotic model is correct to O(β−2),
these must be expressed in the form xf = η0 + β−1η1 + ... and Tf = Ts + β−1Tf1 +
.... The leading terms can be easily computed; the location of the reaction sheet (the
stoichiometric surface, in this case) results from

1− e−Le
F
F0

1− eLe
O
G0

= −φ , (20)

and the stoichiometric temperature is given by

Ts = 1 + ∆T
e−G0

(
eF0 − 1

)
eF0 − e−G0

− q eLe
F
F0
(
eF0 − 1

) (
e−G0 − 1

)(
eLe

F
F0 − 1

)
(eF0 − e−G0)

,
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where F0 and G0 denote F (η0) and G(η0) respectively. The O(β−1) terms can be
written explicitly, but they involve cumbersome relations that will not be given here.
For unity Lewis numbers the stoichiometric flame temperature reduces to

Ts = q + 1 + (∆T − q)(1 + φ−1)−1.

This is the flame temperature to leading order as seen in Cheatham and Matalon [5],
using the scaling of this paper, and is regardless of temperature dependent or constant
transport properties. It can be shown numerically that for generic Lewis numbers the
stoichiometric flame temperature is the same for temperature dependent and constant
transport properties. In Fig. 3 the effect of Lewis numbers on the stoichiometric flame
temperature is given for both the temperature dependent and constant transport prop-
erties with m = 1. As both Lewis numbers decrease, the diffusivity of the reactants
increase, and the flame temperature increases. When the fuel is in the flow m > 0, and
Le

O
changes then there is no difference between the flame temperature for constant and

temperature dependent transport. The flame temperature is smaller for the temperature
dependent versus constant transport properties when Le

F
> 0. p

The entire analytical solution (17)-(19) appears in an implicit form because the in-
tegrals that constitute F (x) andG(x) depend on the temperature T over entire intervals
and the location of the reaction sheet xf that also depends on the temperature T . How-
ever, for constant transport (Λ = 1), F = m(x + 1), G = −m(1 − x) and (17)-(19)
are explicit functions for the determination of T, YF , YO, that depend on xf and must
be first determined from (20).

Presenting the results for variable transport, necessitates using an iterative nu-
merical scheme. A convenient initial guess is the solution for complete combustion
(β−1 = 0) with constant transport properties (Λ = 1), which can be written explicitly.
For the results presented below we assume that Λ = Tn with n = 0.7. Varying n
in the range 0.5 ≤ n ≤ 1 produce results that do not differ significantly from those
with n = 0.7. Furthermore, for simplicity, we consider the case when there is no
temperature difference between the two boundaries, ∆T = 0.

3.1. Burke-Schumann Limit

The Burke-Schumann limit (complete combustion) is obtained by setting β−1 = 0.
Figure 4(a) shows temperature and the mass fraction profiles across the entire chamber,
with constant and variable transport for the case in which the bulk flow is directed to the
reaction zone from the fuel side. Figure 4(b) shows similar profiles, but for the reverse
case, namely when the bulk flow is directed towards the reaction zone from the oxidizer
side. These graphs clearly identify the influence that temperature-dependent transport
coefficients has on the flame structure. We first note that with variable transport, the
reaction sheet (or stoichiometric surface) shifts towards the fuel boundary when the
direction of the bulk flow is from the fuel side (m > 0), and towards the oxidizer
boundary when the bulk flow is from the oxidizer side (m < 0).

As a result, it is clear that at any position x the fuel mass fraction YF will be smaller,
and the oxidizer mass fraction YO larger, when Λ = Λ(T ) than when Λ = 1. Another
observation is that the stoichiometric flame temperature is unaffected by whether Λ
depends on temperature or not (this appears to be a general result). Consider first
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Figure 3: The stoichiometric flame temperature, Ts as a function of Lewis numbers for constant (solid
curve), temperature-dependent (dashed curve) transport.

m > 0; since the temperature at the reaction sheet and at the two boundaries x = ±1
are held fixed, the temperature profile on the fuel side will necessarily be larger with
variable than with constant transport, and will be smaller on the oxidizer side. The
reverse is true when m < 0.

The location of the reaction sheet, or stoichiometric surface, is solely determined by
the fuel and oxidizer fluxes that must flow into the reaction sheet in stoichiometric pro-
portions. Therefore xf must depend on the initial mixture strength φ and the fuel and
oxidizer diffusivities DF , DO; respectively. The limit m = 0 is particularly instruc-
tive; it corresponds to an ideal diffusion flame where both reactants reach the reaction
zone purely by diffusion. An expression for the stoichiometric surface η0 in this case
can be obtained from (20) using L’Hôpital’s Rule and integrating the corresponding
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(a) Bulk flow directed towards the reaction sheet from the fuel side.
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(b) Bulk flow directed towards the reaction sheet from the oxidizer side.

Figure 4: Temperature and mass fraction profiles with constant (solid curves) and temperature-dependent
(dashed curve) transport for (a) m = 1 and (b) m = −1. Calculated for φ = 0.6, unity Lewis number,
q = 4.0, and T0 = 1.

temperature profile, which yields

η0 =
Φ− 1

Φ + 1
, (21)

where

Φ =
Le

O

Le
F

φ =
ỸF0

/νFWF

ỸO1
/νOWO

· DFDO
,

that may be considered as the “effective mixture strength”. This depends not only on
the ratio of the initial mass of fuel and oxidizer, but also on the ratio of their diffusivi-
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Figure 5: The location of the stoichiometric surface η0 for complete combustion as a function of the bulk
flow velocity for constant (solid curve), temperature-dependent (dashed curve) transport, and solid circles of
experimental data obtained from [13].

ties. When fuel and oxidizer are supplied in stoichiometric proportions and there is no
preferential diffusion, the problem is completely symmetric and η0 = 0. This result is
true whether Λ depends on temperature or not. The corresponding flame temperature
to leading order is

Ts = T0 +
q

Le
F

+ Le
O
φ
,

where the temperature difference (∆T ) is zero. As the diffusivity of the fuel and ox-
idizer increase (the Lewis numbers decrease) the stoichiometric flame temperature in-
creases. Since for m > 0 the oxidizer diffuses against the stream, the reaction sheet
is located near the oxidizer boundary; when the diffusivity increases with temperature
the ability of oxidizer to penetrate the stream is enhanced, resulting in a smaller value
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Figure 6: The location of the reaction sheet as a function of the initial mixture strength φ for constant (solid
curve) and variable (dashed curve) transport. Calculated for m = 1, T0 = 1.

of η0. For m < 0 it is the fuel that diffuses against the stream and the reaction sheet
is near the fuel boundary; but when the diffusivity depends on temperature the fuel is
more mobile which results in a larger value of η0.

In Fig. 5 we show the dependence of η0 on the magnitude and direction of the
bulk flow for two sets of conditions, and compare the results to those obtained from the
experimental data of Robert and Monkewitz [13] and [18]. In Fig. 5(a) the conditions
correspond to Φ > 1 and the reaction sheet for m = 0 is located on the oxidizer side,
at η0 = 0.4. In Fig. 5(b) the conditions correspond to Φ < 1 and the reaction sheet for
m = 0 is located on the oxidizer side, at η0 = −0.16. When there is a bulk flow, the
trend for constant and variable transport follow the discussion presented above. These
results are in agreement with the experimental data of Robert and Monkewitz [18].
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Figure 7: Response curves showing the extent of fuel leakage on D0, for various values of the initial mixture
strength φ, for constant (solid curve) and variable (dashed curve) transport coefficients. Calculated for unity
Lewis numbers.

Figure 6 gives an example of the the dependence of η0 on the initial mixture
strength for different sets of Lewis numbers. We note that the effect of increasing
Le

O
on the location η0 is more significant then the effect of increasing Le

F
; this is

because the flow is directed from the fuel side and oxidizer diffuses against the stream.
The opposite trend is seen when m < 0.

3.2. Incomplete Combustion
The Burke-Schumann limit of complete combustion results when δ → ∞, and

since δ is inversely proportional to m2 so that at low flow rates it allows for simulta-
neous mixing and chemical reaction. At higher flow rates, there may be incomplete
combustion, the flame temperature Tf is reduced to below the stoichiometric tempera-
ture Ts and there is an O(ε) leakage of fuel and/or oxidizer through the reaction sheet.
The leakage increases as m increases, and beyond a critical value a steady flame can
no longer be sustained in the chamber. These conditions are associated with extinction
and can be identified as a turning point when plotting the reactant leakage as a function
of the effective Damköhler number D. Figure 7 shows the fuel leakage as a function of
the effective Damköhler number for several values of φ, for constant as well as variable
transport. The results clearly show that by appropriately accounting for the temperature
dependence in the transport coefficients, the critical Damköhler number is lower than
the value estimated with constant coefficients.

4. Thermal-diffusion (Soret-effect)

The system of equations (4)-(13) for Λ(T ) = 1 and for Soret effect only in the fuel
αTO

= 0, has a solution corresponding to a planar flame with the temperature and mass
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fractions profiles given by

T =


1+(Tf−1) em(x+1)−1

em(xf+1)−1
−1 < x < xf ,

1+∆T+(Tf−1−∆T ) em(x−1)−1

em(xf−1)−1
xf < x < 1

(22)

YO =


β−1q−1Le

O
φSO

emLe
O

(x+1)−1

emLe
O

(xf+1)−1
−1 < x < xf ,

1−(1−β−1q−1Le
O
φSO) emLe

O
(x−1)−1

emLe
O

(xf−1)−1
xf < x < 1

(23)

YF =


emLe

F
(x+1)T−αT

[
1− A(x)

A(xf )

]
+ β−1q−1Le

F
SF emLe

F
(x−xf )

(
Tf

T

)α
T A(x)
A(xf ) −1 < x < xf ,

β−1q−1Le
F
SF emLe

F
(x−xf )

(
Tf

T

)α
T B(x)
B(xf ) xf < x < 1

(24)
where

A(x) =

∫ x

−1

e−mLe
F
x̌ TαT dx̌, and

B(x) =

∫ 1

x

e−mLe
F
x̌ TαT dx̌. (25)

The location of the flame front is found to be a transcendental equation for xf and
Tf . The model is only correct to O(ε2) so we expand xf = η0 + εη1 + ..., and
Tf = Ts + εTf1 + ... to leading order

−φ =
mLe

F
A0

emLe
F

(
1− e−mLe

O
(η0−1)

) (26)

and

Ts = 1 + ∆T
em(η0+1) − 1

e2m − 1
+
q

φ

e−mη0
(
em(η0+1) − 1

) (
em(η0−1) − 1

)
(em − e−m)

(
1− e−mLe

O
(η0−1)

) (27)

where A0 = A(η0). The O(ε) terms can be written explicitly, but will not be written
here.

The numerical scheme to solve for the location of the reaction sheet is the same as
what was done in the Variable Transport - No Soret Effect section. We examine Soret
effect for several types of fuels given in table 1 of the appendix. To simplify the graphs
the value of nonane was not used, but the trends discussed below are consistent for
nonane as well.

For the Burke-Schumann solution (complete combustion) when β−1 = 0, Fig. 8(a)
shows the difference between the location of the reaction sheet for no-Soret diffusion
and Soret diffusion for dodecane, hexane, propane, and methane as a function of φ. For
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Figure 8: Calculations for αT and LeF are taken from Table 1 and LeO = 1, m = 1, and T0 = 1. Note:
nonane was not used, this was done to keep the graphs readable.

the heavy fuel the location of the reaction sheet shifts towards the fuel region, as the
fuel decreases in size the difference between including Soret and not including Soret
decreases. For the case of light fuel like methane the reaction sheet shifts toward the
oxidizer region. Figure 8(b) shows the stoichiometric temperature as a function of φ for
dodecane, hexane, propane, and methane. The stoichiometric temperature is smaller
for dodecane and as the fuel becomes smaller the difference in the stoichiometric tem-
perature while including Soret effects and not including Soret effects becomes smaller.
For the light fuel of methane the stoichiometric temperature is larger when accounting
for Soret effects. Figure 8 is in agreement with the results given by Arias-Zugasti and
Rosner [11].

The conditions under which extinction happens is examined for both a heavy fuel
(dodecane) and a light fuel (methane) in Fig. 9. In Fig. 9(a) the response curve for
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Figure 9: Calculations made for dodecane (a) were αT = 1.4 and LeF = 4.63 and methane (b) were
αT = −0.17 and LeF = 1.01; and φ = 0.8, LeO = 1, and T0 = 1.

dodecane with Soret diffusion shows that a smaller amount of leakage leads to extinc-
tion. The opposite trend is seen for methane, Fig. 9(b), in which a larger amount
of leakage is required for extinction. In both cases there is a slight difference in the
amount of flow for extinction.

5. Conclusion

The planar chambered flame was used to investigate the influence of temperature-
dependent transport properties and Soret diffusion on the structure of a diffusion flame.
The results for the temperature-dependent transport properties show a significant change
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in the location of the reaction sheet, particularly when one of the reactants has to diffuse
against a relatively strong flow. The stoichiometric flame temperature is not affected
by temperature-dependent transport; however the correction to the flame temperature
due to incomplete combustion does change when variations in thermal and mass dif-
fusivities with temperature are accounted for. Furthermore, it was found that when
assuming constant transport properties the extinction conditions identified by a critical
Damköhler number Dc below which a steady flame may not be sustained are overesti-
mated. The critical Damköhler number Dc when transport properties are more realis-
tically modeled is significantly lower. Finally, predictions with temperature-dependent
transport properties better approximate the location of the reaction sheet and the pro-
files of the reactants when compared to experimental data from Robert and Monkewitz
[18].

Also both heavy and light fuels were investigated to see the implications of in-
cluding Soret effect in the analysis of diffusion flames. Motivated by estimates of the
thermal diffusion coefficients, the Soret effect was only included in the diffusion flux
relation for the fuel equations where the oxidizer was assumed to follow a Fickian’s
law. Since the reaction zone is essentially a diffusive-reactive zone, its internal struc-
ture of the reaction sheet was re-analyzed with the inclusion of Soret effect, using the
same analysis of Cheatham and Matalon [5]. The modifications to the jump in the flux
conditions across the reaction sheet due to the Soret effect were found to be relatively
small and on the order O(β−1). Results show that several flame characteristics are
affected by thermal diffusion. The location of the reaction sheet and the stoichiomet-
ric temperature see a slight change especially when there is a very heavy fuel such as
dodecane or a very light fuel such as methane. These results are in agreement with
those of Arias-Zugasti and Rosner [11]. In this work is has been observed, that due to
thermal diffusion, that a smaller amount of leakage through the reaction zone for heavy
fuels and a larger amount of leakage is necessary for light fuels for extinction to occur.

Appendix A

The multi-component Stefan-Maxwell equation [19] for a mixture comprising of
N species, neglecting body and pressure forces, is

∇Xi =

N∑
j=1

XiXj

Dij
(Vj−Vi) +

XiXj

ρDij

(
DTj
Yj
− D

T
i

Yi

)
∇T
T
, (28)

where Vi is the diffusion velocity,Xi the molar fraction, Yi the mass fraction of species
i, and Dij ,DTi are the binary diffusivities and thermal diffusion coefficients respec-
tively. The mass and molar fractions satisfy

N∑
j=1

Xj = 1,

N∑
j=1

Yj = 1, (29)
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and are related via Yi = XiWi/W , where Wi is the molecular weight of species i and

W =

N∑
j=1

XjWj , (30)

the average molecular weight of the mixture. An additional constrain is

N∑
j=1

YjVj = 0. (31)

stating that the net diffusion mass flux is zero.
For a dilute mixture, all species are scarce relative to an abundant diluent, identified

as speciesN . ThenXi�1 and Yi�1 for i = 1, ..., N−1, while YN ∼ 1 andXN ∼ 1.
Consequently, (31)-(30) imply that VN�1 andW ∼WN , such that Yi = XiWi/WN .
With these simplifications the Stefan-Maxwell equation (28) reduces to

∇Xi ∼ −
XiVi
DiN

− Xi

Yi

DT
i

ρDiN
∇T
T
, i=1, . . . , N−1 (32)

and, when expressed in terms of the mass fractions, yields an explicit expression for
the diffusion mass flux

ρYiVi = −ρDiN∇Yi −DTi
∇T
T
, i=1, . . . , N−1 . (33)

The thermal diffusion ratio kTi , is commonly defined [20] as

kTi =
ρ

C2WiWN

DTi
DiN

,

where Ci = ρYi/Wi, is the concentration of species i and C is the total concentration.
For dilute mixtures, C ∼ ρ/WN and kTi = (WN/ρWi)(DTi /DiN ). This coefficient,
however, depends on the mixture composition, while the (dimensionless) thermal dif-
fusion factor αTi

≡ kTi /XiXN is nearly constant [10]. IntroducingDTi ∼ ρYiDiNαTi

into (33), yields

ρYiVi = −ρDiN
(
∇Yi + αTi

Yi
∇T
T

)
, i=1, . . . , N−1 . (34)

The equivalent expression for i = N is rather complicated, involving on its right hand
side a summation over all species. This expression, however, in not needed because it
will only appear in the mass balance equation of species N , and YN can be obtained
instead from the constrain (29) once all the other mass fractions have been determined.

Equation (34) is an explicit expression for the diffusion mass flux of species i, in
a mixture dominated by an inert N . The first term on the right hand side is Fick’s law
of diffusion, whereby mass is transported from high-to-low concentration regions with
coefficient DiN corresponding to the binary diffusivity of the representative species
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and the abundant inert. The second term results from a temperature gradient with coef-
ficient DiN αTi corresponding to thermal diffusion or Soret diffusivity. When αTi>0,
species i moves towards the colder region, and when αTi

<0, species i moves towards
the warmer region. Representative values of αT are shown in Table 1 for selective
fuels. We note that αT > 0 for heavy fuels and αT < 0 for light fuels.

Compound WF αT Le

Methane 16.04 -0.17 1.01
Propane 44.10 0.24 1.90
Hexane 86.17 0.64 2.71
Nonane 128.25 1.08 3.85

Dodecane 170.23 1.4 4.63

Table 1: Values for the thermal diffusion factor αTF
and the corresponding Lewis number for representative

fuels; taken from Rosner [9]. Note the definition of the Lewis number is the conventional one used in the
combustion literature, which is the reciprocal of the Lewis number defined in Rosner’s [9] text.
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